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Single-wavelength anomalous dispersion (SAS) data can in principle be phased

by direct methods since a priori estimates of the three-phase structure invariants

can be computed from these data. The mean phase error of the most reliable

triple estimates for a small protein, however, is typically no better than 60�, and

does not bode well for applications to larger structures. A procedure is described

that can substantially lower the error in these estimates and introduce a larger

number of useful triple invariants into the phasing process. The mean phase

error of the most reliable triples for a 2.5 AÊ resolution data set from a Pt

derivative of a 115-residue protein was reduced from 55 to 25� by this method. It

was also possible to identify a signi®cant number of the poorest triple estimates,

those with mean phase errors approaching 90�, such that they could be reliably

down-weighted or excluded from the phasing process.

1. Introduction

Furey and co-workers (Furey et al., 1985) were the ®rst group

to demonstrate that direct methods utilizing single-wavelength

anomalous dispersion (SAS) estimates for the three-phase

invariants (Hauptman, 1982) were feasible provided one had

adequate computing facilities and reasonable criteria to help

identify potentially good well phased maps. Several methods

have been proposed to further take advantage of these SAS

triple estimates (Langs, 1986; Han et al., 1991; Hauptman &

Han, 1993; Langs & Han, 1995) to ultimately obtain the native

crystal phases. Multisolution tangent-formula procedures are

easily modi®ed to use SAS invariant estimates and suitable

solutions are often identi®ed in a reasonable number of trials

by low values of their SAS phase-re®nement residual

[Hauptman & Han, 1993, equation (14)]. These procedures

are best suited to smaller structures that contain a few strong

anomalously scattering atoms. Larger more complex structural

applications will require SAS triple estimates that are signi®-

cantly more accurate than are currently available.

A number of algebraic (Karle & Hauptman, 1957; Vaughan,

1958; Hauptman, 1964; Hauptman et al., 1969; Karle, 1970) and

probabilistic (Hauptman, 1975; Giacovazzo, 1977; Karle, 1982)

formulae have been proposed to obtain more reliable triple

invariant estimates for native data sets based on the six E

magnitudes in the ®rst neighborhood or so-called quadrupole

relationship (Viterbo & Woolfson, 1973) of the triple. A

subsequent application (Langs & Han, 1995) used quadrupole

averaging to obtain better SAS triple estimates, but its success

depended critically upon the average error in the initial SAS

estimates being reasonably small and Gaussian in distribution.

In fact, the errors in the estimates were strongly correlated

through quadrupoles. An alternative method to improve the

SAS estimates will be described that is more independent of

this phase-error correlation.

We note that numerous techniques have been devised

to resolve the SIR/SAS phase ambiguity given that the

substructure is known, in contrast to the methods described

above, which seek an ab initio direct-methods solution

through reliably estimated triple phase invariants, and as such

do not require this additional structural information. It is

appropriate, however, to acknowledge several recent papers

(Fan et al., 1990; Liu et al., 1999) that have successfully used

earlier algebraic probabilistic principles (Fan, 1965) for

resolving the phase doublet ambiguity based on the value of

the triplet phase invariant computed from the known

substructure.

2. Analysis

Quadrupole relationships have been a useful framework for

the evaluation of three-phase structure invariants. A quadru-

pole is de®ned by phases and amplitudes of six pairs of

Friedel-related E values which can be partitioned into four

triple relationships as

�1 � 'h ÿ 'k � 'kÿh � t1

�2 � ÿ'h � 'l � 'hÿl � t2

�3 � 'k ÿ 'l � 'lÿk � t3

�4 � ÿ'kÿh ÿ 'hÿl ÿ 'lÿk � t4P
�i � �1 ��2 ��3 ��4 � t1 � t2 � t3 � t4:



The ti are fractional shifts of 2� which result from trans-

forming the phase values of general re¯ections back to some

standard reference form. In most instances,
P

�i will exactly

equal 0 (mod 2�), inferring that all four values of �i may be

reliably close to zero. But on occasion
P

�i may equal some

large fraction of 2� to indicate that it is impossible for all four

�i values to be reliably close to zero. It follows that, if a

particular triple �i forms a relatively large percentage of these

`aberrant' relationships, it may be indicative that it has some

value far from zero. In the case that one has initial SAS

estimates, !i, for the full basis set of triples �i, where

ÿ� � !i � � rad, it follows that the estimates will tend to be

good when
P
!i �

P
�i, regardless of the particular value ofP

�i. Improved ! estimates

exp i!1 � K
P

j

wtj exp i
P

�j ÿ !2j ÿ !3j ÿ !4j

� � �1�

were reported in an earlier paper (Langs & Han, 1995), where

wtj is a weighting factor:

wtj � 0:5 1� cos
P

j

ÿ!1j ÿ !2j ÿ !3j ÿ !4j

 !" #
; �2�

which tends towards 1.0 as the quadrupole's closure,

!1j±!2j±!3j±!4j, approaches 0 (mod 2�), and tends toward

0.0 when the closure approaches � (mod 2�). The actual

results obtained from (1) suffer from the fact that the mean

phase errors in the ! estimates are not randomly distributed in

a Gaussian manner but are strongly correlated through the

quadrupole itself.

An alternative strategy for evaluating the reliability of the

SAS triples is proposed based on the conditional frequency

distribution of triples occurring in quadrupoles (Langs, 1993).

The v+ frequency statistic for the triple invariant �1 was

formulated with reference to one particular E magnitude, in

the group El, Ehÿl and Ekÿl, exceeding some threshold value t,

say |El| > 1.75, on the condition that the other two, |Ehÿl| and

|Ekÿl|, also exceed this value.

v� � P
l

#qds�jElj> t
��jEhÿlj; jEkÿlj> t�

� �
� P

l #qds�jElj � obs
��jEhÿlj; jEkÿlj> t�� �ÿ1

: �3�
The denominator of this fraction records the total number of

quadrupoles that have any two of the three |E|'s exceeding the

chosen threshold and the third |E| magnitude known to be

recorded within the observed data set.

It is not possible to formulate a similar statistic with

regard to analyzing SAS triples based simply on the E

magnitudes, since the A values indicating the reliability of the

triples are related to their six composite E values [|Eh|, |Eÿh|,

|Ek|, |Eÿk|, |Ekÿl|, |Eÿk+l|] in a more complex manner. Rather

than use |E| amplitudes, it may be more appropriate to derive a

quadruple-based frequency expression for �1 that is similar to

(3) in that it is conditioned on the A values of any one of the

other three triples (�2;�3;�4) exceeding some threshold

value, say 1.0, on the condition that the other two are known

to exceed that threshold.

v�SAS�� � P
l

#qds�A4 > t
��A2;A3 > t�

� �
� P

l

#qds�A4 � obs
��A2;A3 > t�

� �ÿ1

: �4�

To compute this statistic, ®rst generate all the ! estimates for a

basis set of E values, which have Asas values exceeding 1.0.

Next count the number of quadrupoles that each triple in that

list can form, which exclusively involves other triples within

the list. This is the numerator of (4). The denominator of (4)

counts the number of quadrupoles that can be formed for

which three triples are in the list but the fourth is not, simply

because its Asas value was less than 1.0. As a practical matter, it

may not be necessary to compute the actual denominator,

which would require one to scan through a large number of

triples not actively used in the phasing process. It may be just

as effective to normalize the numerator of (4) using relative

numbers based on quadrupoles generated on the basis of |E|'s:

Scale � P
l

#qds�jElj � obs
��jEhÿlj; jEkÿlj> t�

� �
h

� P
l

#qds�jElj � obs
��jEhÿlj; jEkÿlj> t�

� �ÿ1

; �5�

where (4) may be approximated by

v�SAS�� � Scale�P
l

#qds�A4 > t
��A2;A3 > t�:

3. Trial calculations

SAS data were provided for the Pt�NO2�2ÿ4 derivative of

macromomycin (Van Roey & Beerman, 1989) which diffracted

to 2.5 AÊ resolution for Cu K� radiation. The protein crystal-

lizes in space group P21 with a single 115-residue molecule in

the asymmetric unit. Data were normalized to E values

(Blessing et al., 1996) and locally scaled (Matthews & Czer-

winski, 1975) to minimize systematic errors in measurements

between Friedel-related re¯ections. The SAS data set

consisted of 3028 Friedel pairs of data for which k 6� 0. The

largest 1500 E magnitudes were then used to generate 111670

triples that had Asas values exceeding 0.75 according to

Hauptman's (1982) formula. This calculation was repeated,

this time using error-free E values in place of the experimental

E values.

The list of triples generated from the experimental SAS

data was sorted in descending order on Asas and grouped into

shells for which the number of triples, average Asas, and mean

phase error h|��|i between the ! estimates and their `true' �
values are reported in section (a) of Table 1. The fraction of

triples, Fsin, for which sin ! and sin �true are the same sign, and

thus conform to the correct enantiomorph, are in column 4 of

the table. Analogous statistics for the triples generated from

error-free data are given in section (b) of Table 1.

With further analysis of the experimental SAS triples list,

the number of quadrupoles (#Qd's) that each triple could form

using three other triples within the list was next computed.
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This list was then sorted in decreasing order on the #Qd and

ordered in shells having the same number of triples as re-

iterated in column 1 of Table 2. The h#Qdi, hAsasi and h|��|i
are tabulated in the three columns in section (b) of the table.

Finally, the scale (5) was computed for each triple using a

value t � 1:65, and the #Qd for each triple was normalized as

#Qdn to put these numbers on a more comparative scale. This

last ®le was re-sorted in descending order on the value of

#Qdn, and the shell averages of #Qdn, Asas and |��| are given

in the last three columns in section (c) of Table 2.

4. Results and discussion

The shell average mean phase errors h|��|i in the original

A-sorted SAS triple invariant estimates increased from about

45 to 75� as the SAS A values decreased from 20 to 0.75 as

shown in column 3 of Table 1. The error tends to be smallest

for the larger A values, but is not consistent with the expected

errors, which should range from about 10 to 65� over the listed

range of A values based on the I1(Asas)=I0(Asas) estimate. The

fraction of the triples, Fsin, consistent with the correct enan-

tiomorph, progressively decreased from 0.80 to 0.56 as shown

in column 4 of the table. Error-free SAS data produce h|��|i
results (b) more in line with their Asas values as expected by

theory.

When the list of ! estimates is sorted on h#Qdi and

arranged in shells having the same number of triples as the

original A-sorted list, we note the h|��|iq decreases signi®-

cantly for the ®rst 10 shells of data having A values from 20 to

�1.0, and then increases for the last 6 shells which have A

values from �1.0 to 0.75. The phase error for the ®rst shell is

reduced from 46.7 to 24.4�, while for the last shell it increased

from 72.1 to 89.3�. An additional small improvement is noted

when the h#Qdi is renormalized with respect to the ability of

each triple to form quadrupoles, h#Qdni. As a result of the

quadruple analysis (Table 2b, c), the experimental SAS triple

estimates can be improved to the point that they approach the

accuracy demonstrated by error-free SAS E values (Table 1b).

In summary, we note that the quadrupole analysis scheme

does help identify which triples in our original list are more

reliable estimates than the others. This can only be achieved if

we simultaneously isolate a group of triples for which the

triple estimates are worse than that observed at the bottom of

the original A-sorted list. Since the individual ! estimates are

not changed by this procedure, the h|��|i over the entire set of

triples is unchanged and any reduction in this value for some

subset of triples must be accompanied by an increase for some

other group. Appropriate reassignment of A values for the

quadrupole ordered list, even to the exclusion of the least

reliable triples invariants, should improve the results of phase

determination methods which use these estimates.

We thank Dr Patrick Van Roey for the use of various MIR/

SAS data sets from his analysis of macromomycin. Support

which this research received through NIH grant GM-46733 is

gratefully acknowledged.

Table 1
SAS triple ! value phase-error statistics; comparison between (a)
experimental and (b) error-free E values.

The 111 670 triples are ranked in descending order on the magnitude of the A
value associated with each estimate and then partitioned into groups
simulating a normal distribution based on the number of triples in each
group. The average A value, hAsasi, mean phase-invariant error, h|��| =
|!ÿ�true|i, and fraction of triples, Fsin, having the same sign of sin ! and
sin �true values are indicated. Better than 90% of the top 9000 triples (*) from
set (b) are consistent with the correct enantiomorph as compared to�70% for
the experimental data set (²).

(a) (b)
Experimental E's Error-free E's

No. of triples hAsasi h��i Fsin hAsasi h��i Fsin

5 16.83 46.7 0.80 17.85 11.3 1.00
15 12.24 52.2 0.80 15.72 23.9 0.99

112 8.74 56.9 0.72 13.42 27.8 1.00
244 6.75 57.4 0.74 11.53 26.5 0.98
726 5.36 55.5 0.73 9.78 28.9 0.97

2032 4.07 57.1 0.70 8.09 32.3 0.94
5977 2.94 58.3 0.69² 6.34 36.9 0.88*

18309 1.98 63.9 0.65 4.54 41.5 0.77
20103 1.42 68.8 0.61 3.30 44.7 0.77
29878 1.09 71.8 0.59 2.39 48.2 0.74
18714 0.89 73.9 0.58 1.70 55.3 0.68

9302 0.81 75.7 0.57 1.29 65.3 0.62
3077 0.78 76.3 0.56 1.06 71.0 0.59
1946 0.76 75.1 0.58 0.94 74.2 0.57

923 0.76 76.2 0.58 0.84 79.2 0.53
307 0.75 72.1 0.56 0.78 84.6 0.51

Table 2
Experimentally measured Pt-MCRM data (a) before and (b), (c) after
quadrupole analysis.

After the analysis, the triples were ranked in decreasing order on the number
of quadrupole interactions (#Qd). The number of triples in each h#Qdi shell is
the same as reported in column 1. The mean phase-invariant error h��iq and
hAsasi associated with this reordered list are also given. Finally, the number of
quadrupoles are renormalized (#Qdn) according to the relative number of
quadrupoles which can be formed that have |El|, |Ehÿl| and |Ekÿl| � 1.65
regardless of whether the invariants �2, �3 and �4 have Asas � 0.75 and
qualify to be included in the original list of 111 670 triples. Although h|��|i has
been signi®cantly reduced, the Fsin ratio is only marginally improved (²) as
compared to column 4 in Table 1.

(a) (b) (c)

No. of
Before After Quad analysis After renormalization

triples h��i h#Qdi hAsasi h��iq h#Qdni hAsasi h��in Fsin

5 46.7 603 8.75 24.4 348 12.62 27.6 1.00
15 52.2 480 8.38 39.5 327 9.68 41.6 0.87

112 56.9 383 5.83 52.2 288 6.95 48.1 0.70
244 57.4 320 5.13 54.3 255 6.09 49.4 0.74
726 55.5 270 4.25 55.8 228 4.83 51.2 0.70

2032 57.1 220 3.43 55.9 194 3.63 55.6 0.72
5977 58.3 169 2.58 57.6 158 2.66 58.2 0.69²

18309 63.9 119 1.82 61.8 118 1.82 61.8 0.66
20103 68.8 85 1.39 66.2 88 1.36 66.7 0.63
29878 71.8 61 1.16 70.8 65 1.13 71.7 0.59
18714 73.9 42 1.03 75.8 46 1.01 76.5 0.56

9302 75.7 29 0.97 79.2 33 0.97 80.1 0.54
3077 76.3 22 0.95 82.9 24 0.94 81.9 0.52
1946 75.1 17 0.93 83.0 19 0.93 83.2 0.50

923 76.2 12 0.93 85.6 14 0.92 88.3 0.50
307 72.1 7 0.93 89.3 8 0.90 89.8 0.56
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